Multi-modal particle manipulator to enhance bead-based bioassays.
نویسندگان
چکیده
By sequentially pushing micro-beads towards and away from a sensing surface, we show that ultrasonic radiation forces can be used to enhance the interaction between a functionalised glass surface and polystyrene micro-beads, and identify those that bind to the surface by illuminating bound beads using an evanescent field generated by guided light. The movement towards and immobilisation of streptavidin coated beads onto a biotin functionalised waveguide surface is achieved by using a quarter-wavelength mode pushing beads onto the surface, while the removal of non-specifically bound beads uses a second quarter-wavelength mode which exhibits a kinetic energy maximum at the boundary between the carrier layer and fluid, drawing beads towards this surface. This has been achieved using a multi-modal acoustic device which exhibits both of these quarter-wavelength resonances. Both 1-D acoustic modelling and finite element analysis has been used to design this device and to investigate the spatial uniformity of the field. We demonstrate experimentally that 90% of specifically bound beads remain attached after applying ultrasound, with 80% of non-specifically bound control beads being successfully removed acoustically. This approach overcomes problems associated with lengthy sedimentation processes used for bead-based bioassays and surface (electrostatic) forces, which delay or prevent immobilisation. We explain the potential of this technique in the development of DNA and protein assays in terms of detection speed and multiplexing.
منابع مشابه
Experimental and finite-element free vibration analysis and artificial neural network based on multi-crack diagnosis of non-uniform cross-section beam
Crack identification is a very important issue in mechanical systems, because it is a damage that if develops may cause catastrophic failure. In the first part of this research, modal analysis of a multi-cracked variable cross-section beam is done using finite element method. Then, the obtained results are validated usingthe results of experimental modal analysis tests. In the next part, a nove...
متن کاملClosed-loop Supply Chain Inventory-location Problem with Spare Parts in a Multi-Modal Repair Condition
In this paper, a closed-loop location-inventory problem for spare parts is presented. The proposed supply chain network includes two echelons, namely (1) distribution centers (DCs) and repairing centers (RCs) and (2) operational bases. Multiple spare parts are distributed among operational bases from distribution centers in the forward supply chain and failed spare parts from operational bases ...
متن کاملAn effective approach for damage identification in beam-like structures based on modal flexibility curvature and particle swarm optimization
In this paper, a computationally simple approach for damage localization and quantification in beam-like structures is proposed. This method is based on using modal flexibility curvature (MFC) and particle swarm optimization (PSO) algorithm. Analytical studies in the literature have shown that changes in the modal flexibility curvature can be considered as a sensitive and suitable criterion for...
متن کاملPERFORMANCE-BASED MULTI-OBJECTIVE OPTIMUM DESIGN FOR STEEL STRUCTURES WITH INTELLIGENCE ALGORITHMS
A multi-objective heuristic particle swarm optimiser (MOHPSO) based on Pareto multi-objective theory is proposed to solve multi-objective optimality problems. The optimality objectives are the roof displacement and structure weight. Two types of structure are analysed in this paper, a truss structure and a framework structure. Performance-based seismic analysis, such as classical and modal push...
متن کاملDynamic Modeling and Optimization of a Decoupled XY Flexure Parallel Micro-Manipulator
The architecture optimization of a newly designed flexure XY parallel micro-manipulator with both input and output decoupling is conducted in this paper. In view of the compliance of flexure hinges, the input stiffness model of the motion stage are established based upon the matrix method, and then the dynamic equation is derived through the Lagrangian approach, which is verified by the modal a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultrasonics
دوره 50 2 شماره
صفحات -
تاریخ انتشار 2010